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TRoots
Equations posess both a right-hand and left-hand side. Subtracting the two sides leaves  ¦(x)  = 0 whose
solution is desired. When there is only one independent variable, the problem is one-dimentional. We call
this finding the root of a function. (i.e. the value of x where ¦(x) = 0.) In general, the number of roots an
equation has is considered to be its order. This is a very common problem in engineering and research.
For complicated equations it is too time consuming, if not impossible,  to solve an equation exactly for all
of its roots. As an alternative, we can calculate an approximation itteratively to within a user defined error
tolerance. This is true for equations with one or many dimensions. For one-dimensional equations, it is
possible to bracket (read trap) a root between bracketing values, and then hunt it down like a rabit. Thus, a
useful algorithm will improve the solution until some predetermined convergence criterion is satisfied. For
our purposes, this criteria will be reducing the delta between X1 and X2 until it is smaller than Tolerance
(more than this later). For smoothly varying functions, good algorithms will always converge, provided that
the initial guess is good enough. It cannot be overemphasized, though, how heavily success depends on
having a good first-guess for the solution.
Note: Try to get some idea of what your function looks like before trying to find its roots. If you need to
mass-produce  roots  for  many  different  functions,  then  you  should  at  least  know  what  some  typical
members of the ensemble look like. Next, you should always bracket a root  that is, know that the function
changes sign in an identified interval before trying to converge to the roots value.
Although there are many methods to calculate the roots of an equation, some good and some not, the
three most popular are included: the bisection method, the Van Wijnaarden-Dekker-Brent method (called
the Brent method for brevity), and Newton-Raphson method (called Newton's method for brevity).

€ The Bisection method is the most foolproof and easiest to understand but does not converge very
fast.

€ Brent's  method is the method of  choice to find a bracketed root of  a general  one-dimensional
function,  when  you  cannot  easily  compute  the  functions  derivative.  The  Brent  method  is
computationally quite complex, but is considered by experts to be the fastest non-derivative based
method for solving for the root of a function.

€ When you can compute the functions derivative, Newton's method is recommended.  Again, you
must first bracket your root.

Bracketing
figure x.1

We usually say that a root is  bracketed in the interval  (a, b) if  ¦(a) and  ¦(b) have opposite signs. If the
function is continuous, then at least one root must lie in that interval (the intermediate value theorem). If
the function is discontinuous but bounded, then instead of a root there might be a step discontinuity which
crosses zero (see fig x.1). 
Bisection Method
Once we know that an interval contains a root, several classsical procedures are available to refine it.
Proceeding with varying degrees of speed and sureness toward the answer. Unfortunately, the methods
that are guarenteed to converge plod slowly along, while those that rush to the solution in the best cases
can also rush rapidly to infinity without warning  if measures are not taken to avoid such behavior.
The Bisection method is one which cannot fail. It is thus not to be sneered at as a method for otherwise
badly behaved problems. The idea is simple. Over some interval the function is known to pass through zero
because it changes sign. Evaluate the function at the interval's midpoint and examine its sign. Use the
midpoint to replace whichever limit has the same sign. After each iteration the bounds containing the root
decrease by a factor of two. If after n iterations the root is known to be within an interval of size en, then
after the next iteration it will be bracketed within an interval of size

Thus we know in advance the number of interations required to achieve a given tolerance in the solution

where e0 is the size of the initially bracketed interval and e is the desired ending tolerance.
Bisection  must succeed. If the interval happens to contain two or more roots, bisection will find one of
them. If the interval contains no roots and merely straddles a singularity, it will converge on the singularity.
It is important to keep in mind that computers use a fixed number of binary digits to represent floating
point numbers. While your function might analytically pass through zero, it is possible that its computed
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value is  never zero,  for  any floating point  argument.   You must decide what  accuracy on the root is
atainable:  convergence  to  within  10 -6 in  absolute  value  is  reasonable  when  the  root  lies  near  1,  but
certainly unachieveable if the root lies near 1026.  You might think to specify convergence to a relative
(fractional) criteria, but this becomes unworkable for roots near zero. The Bisection method will require you
to specify an absolute tolerance, such that iterations continue until the interval becomes smaller than this
tolerance in absolute units. Usually, you may wish to take the tolerance to be

where e is the machine precision and x1 and x2 are the initial brackets. When the root lies near zero you
ought to consider carefully what reasonable tolerance means for your function.
Van Wijnaarden-Dekker-Brent Method
While other methods (namely secant and false position) may converge faster than bisection, there are ill
behaved  functions  for  which  bisection  converges  more  rapidly.  These  can  be  chopy,  discontinuous
functions,  or  even smooth functions if  the second derivative changes sharply near the root.  Bisection
always halves the interval, while other methods can sometimes spend many cycles slowly pulling distant
bounds closer to a root. Is there anything we can do to get the best of both worlds?
Yes. We can keep track of whether a supposedy superlinear method is actually converging the way it is
supposed to and, if not, we can intersperse bisection steps so as to guatrentee at least linear convergence.
This kind of super-strategy requires attention to detail,  and also careful  consideration of how roundoff
errors can affect the guiding strategy. Also, we must be able to determine reliably when convergence has
been achieved.
An excelent algorithm that pays close attention to these matters was developed in the 1960's by van
Wijngaarden, Dekker, et. al. - and later improved by Richard P. Brent. For brevity, we refer to the final form
of the algorithm as  Brent's method. The method is guarenteed (by Brent) to converge, so long as the
function can be evaluated within the initial interval known to contain a root.
Brent's method combines root bracketing, bisection, and inverse quadratic interpolation to converge from
the neighborhood of a zero crossing. While the false position and secant methods assume approximately
linear behavior between two prior root estimates, inverse quadratic interpolation uses three prior points to
fit an inverse quadratic function (x as a quadratic function of y) whose value at y = 0 is taken as the next
extimate of the root  x.  Of course we must have contingency plans should the root fall  outside of the
brackets. Brent's method takes care of all that.  
Thus, Brent's method combines the sureness of bisection with the speed of a high-order method when
appropriate. We recommend it as the method of choice for general one-dimensional root finding where a
function's values only (and not its derivative or functional form) are available.
Newton-Raphson Method

Perhaps the most celibrated of all one-dimensional root-
finding routines is Newton's method also called the
Newton-Raphson method. This method is distingu3

ished from the methods of previous sections by the fact that it requires the evaluation of both the function
¦(x), and the derivative ¦¢(x), at arbitrary points x. The Newton-Raphson formula consists geometrically of
extending the tangent line at a current point xi, until it crosses zero, then setting the next guess xi+1 to the
abscissa of that zero-crossing (see fig x.2). Algebraicly, the method derives from the familiar Taylor series
expansion of a function in the neighborhood of a point 

figure x.2
The  Newton-Raphson  method  is  not  restricted  to  one  dimension.  The  method  readily  generalizes  to
multiple dimensions. Why do we call Newton-Raphson powerful? The answer lies in its rate of convergence;
the  Newton-Raphson  method  converges  quadratically.  Near  a  root,  the  number  of  significant  digits
approximately doubles with each step. This makes the Newton-Raphson method the method of choice for
any  function  whose  derivative  can  be  evaluated  efficiently,  and  whose  derivative  is  continuous  and
nonzero in the neighborhood of a root. Even where Newton-Raphson is not feasable for the early stages of
convergence, it is very common to "polish up" a root with one or two steps of Newton-Raphson, which can
multiply by two or four its number of significant digits!

figure x.3
Given its strengths, the Newton-Raphson method can also give grossly inacurate results. For instance, the
initial guess for the root might be so far from the true root as to let the search interval include a local
maximum or minimum of  the function (fig x.3).  If  an iteration places a trial  guess near  such a local
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extreme, so that the first derivative nearly vanishes, then Newton-Raphson sends its solution off to limbo,
with an equally small hope of recovery.
For an efficient realization of Newton-Raphson the user provides a routine which evaluates both ¦(x) and its
first dirivative ¦¢(x) at the point  x. The Newton method does not adjust bounds, and works only on local
information at the point x. The bounds are only used to pick the midpoint as the first guess, and to reject
the solution if it wanders outside of the bounds.
Constructing ¦(x) and ¦¢(x)
In  order  to  calculate  your  roots,  TRoots  needs  to  know your  ¦(x). If  you  are  planing  to  calculate  via
Newton's method, it will need to know your ¦¢(x)as well. 
The way you will provide these equations to TRoots is by extending TRoots fx and fxPrime methods.  Do
this by declaring in your program as an object of type  TRoots. Then define the virtual method  fx (and
optionally fxPrime) within TRoots as shown below: 
  PMyRoots = ^TMyRoots;
  TMyRoots = Object(TRoots)
     Function fx(X:TFloatingPoint)      : TFloatingPoint; Virtual;
     Function fxPrime(X:TFloatingPoint) : TFloatingPoint; Virtual;
  End; {Object}
Next you need to express the equation you wish to solve for. For instance:
  Function TMyRoots.fx;
     Begin
        fx := (2 * x + 3) * (x - 3);
     End;
  {EndMethod}
  Function TMyRoots.fxPrime;
     Begin
        fxPrime := 4 * x - 3;
     End;
  {EndMethod}
Now, when you instantate your object (of TMyRoots) the fx / fxPrime methods you created will be called
upon to evaluate your equation. For instance:
  Procedure XYZ;
     Var
        ARoot : PMyRoots;
        ...

     Begin
        ...
        ARoot := New(PMyRoots, Init(dX1, dX2, dTolerance, dIterMax));
        dResult := ARoot^.BrentRoots(dRootValue);
        ...
To learn more about how this is accomplished refer to Ch. 17 Objects in Borland's Windows Promgrmmers
Guide.
Note: TRoots.fx and TRoots.fxPrime are defined as abstract methods - thus if you call them directly (e.g.
extended fx / fxPrime incorectly) your program will terminate with an error code 211.

Ancestor

TNumMethods
Fields

X1 X1 : TFloatingPoint;
The initial lower bracket value
X2 X2 : TFloatingPoint;
The initial upper bracket value
Tolerance Tolerance : TFloatingPoint;
Converge on root until successive values of roots differ by less than Tolerance.
IterMax IterMax : LongInt;
Maximum number of itterations allowed to calculate root. If IterMax is reached before a 
root is found the function returns with a value of 0 and places the error code in 
ErrorCode.

Methods

Init constructor Init(vX1, vX2, vTolerance : 
TFloatingPoint; vIterMax : LongInt);
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Constructs a new TRoots object with a bounding interval of vX1 to vX2, a tolerance of 
vTolerance, and a maximum number of iterations of vIterMax.
BrentRoots function : TFloatingPoint;
Calculates the root of the equation defined in fx via Brent's method.
BisectionRoots function : TFloatingPoint; 
Calculates the root of the equation defined in fx via the Bisection method.
NewtonRoots function : TFloatingPoint;
Calculates the root of the equation defined in fx via Newton's Method.  Don't forget to 
define fxPrime.
fx function (X : TFloatingPoint) : 
TFloatingPoint; virtual;
This is an abstract method and must be overriden as shown above in Constructing ¦(x) 
and ¦¢(x).
fxPrime function (X : TFloatingPoint) : 
TFloatingPoint; virtual;
This is an abstract method and must be overriden as shown above in Constructing ¦(x) 
and ¦¢(x).
Done destructor Done; virtual;
Disposes the TRoots object by calling TNumMethods.Done.

Err Codes

0
1
2
3


